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The general solution to the three-body problem definitely has its difficulties. However, adding
some restrictions to simplify the problem allow for modern solutions that provide stable orbits for
artificial satellites placed around the equilibrium points of the reduced system. The formal definition
for the equilibrium positions in the Sun-Earth/Moon system is fairly easy to derive. Based on this
derivation, I will highlight a few satellite orbits that are most useful to astronomy, and pose a
discussion of missions to these equilibrium points.
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I. INTRODUCTION

The James Webb Space Telescope (JWST) is about
to launch us into the next generation of astronomical re-
search and aerospace engineering. Before it heads out
to the L2 equilibrium point 1.5 million kilometers from
Earth, it can serve as an inspirational prompt to investi-
gate the development of scientific mission design for the
Sun-Earth/Moon orbital equilibrium points over the past
25 years. A few points of interest that will be highlighted
in this article are the mathematical locations of these
equilibrium points II, the type of orbits spacecraft will
have over the course of their mission, and how the sci-
entific objectives constrain the final mission and orbit
design III.

First of all, it is important to understand the classi-
cal dynamics of these systems, even if you do not fully
understand every aspect or mathematical tool used to
determine the possible orbits. The system we are eval-
uating is the Sun-Earth/Moon-spacecraft system. The
closest analytical solution possible is the circular reduced
three-body problem. This method drastically reduces the
complexity of the system to a point where classical, La-
grangian mechanics are able to solve for the points of
equilibrium within the system. The orbits predicted from
this simplified model are a great starting point for choos-
ing the actual orbit of your spacecraft—which is usu-
ally a small perturbation from your target orbit III A 1.
Station-keeping maneuvers to maintain the orbit are usu-
ally infrequent and economical from a propulsion budget
perspective III A 2. Figures 2 and 3 will help you visual-
ize these orbits.

The ”equilibrium points,” ”libration points,” or ”La-
grange points,” targeted for scientific missions are just
two of the five total points. These two are the closest to
Earth, and have been of interest for a few reasons. The
most relevant advantages for the JWST mission are (1)
the extremely cold and controlled environment far from
Earth, and (2) the ease of maintaining the orbit over its
decade-long mission IV. This reasoning applies to all the
scientific missions ever sent to these points points; from
the first mission, ISEE-3 in 1985, through all future pro-
posed missions. There have already been over a dozen

missions, with a lot of wisdom gained along the way. It
feels like this is all culminating in the outrageously am-
bitious engineering, trajectory, deployment, and imagi-
nation that has been developed to bringing JWST into
reality.

II. SOLVING THE CIRCULAR RESTRICTED
THREE-BODY PROBLEM

A. The general vs restricted three-body problem

Imagine a system of three celestial bodies nearby each
other in space. They are each exerting a gravitational
force on the others. Give each of them an initial velocity,
and watch what happens next. Surprisingly, there is no
closed-form analytical solution to such a system. This
system exhibits chaotic behavior: where small changes to
initial conditions result in large changes to the outcomes
after you let it evolve for a reasonable amount of time.

The restricted three body problem makes the simple
restriction that the mass of the third body be negligible
compared to the other two. Now, this drastically changes
the problem. Instead of three independently moving bod-
ies, you have two primary bodies, m1 and m2, and a
dynamically separated, “massless” particle.

The primary bodies now form a two-body central force
problem, which is fairly easy to solve using the right co-
ordinates and assuming circular orbits. The solution of
this problem will be needed to set up the next section
where we will find the motion of the particle within the
gravitational field of the primaries. There is no central
potential for the particle’s motion, so use of polar co-
ordinates would be undesirable. Therefore, it is best to
solve this with Cartesian coordinates now, so we keep
everything consistent throughout the derivation.
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FIG. 1. The circular restricted three-body problem is shown
here with the collinear points L1, L2, L3 labeled on the hor-
izontal axis. The points L1 and L2 are of interest for their
sweet-spot distance from Earth: not too far that communica-
tion becomes difficult, but not so close as to have a complex
orbit of the Earth that reduces observational efficiency. In
this image, the WMAP satellite is shown positioned at L2 in
a Lissajous orbit. [1]

B. Gravitational Potential Two-Body Problem

1. Coordinates

The two-body problem (2BP). The coordinate system
is Cartesian and rotates with the bodies. This means the
entire system is confined to a 2-D plane. To simplify the
position, the primaries are placed in the fixed positions
[2]

r1 = (µ, 0), r2 = (µ− 1, 0), (1)

|r1| = r1 = µ, |r2| = r2 = 1− µ (2)

The vector r separating them is then

r = r2 − r1 = (1, 0) (3)

The masses are fixed at

m1 = 1− µ,m2 = µ, µ ∈ [0, 0.5] (4)

2. Newton’s method

Now that we have the coordinates set up, we can look
at the forces. From Newtonian physics, we can see that
the gravity and centrifugal forces must be balanced to

maintain a stable orbit.

Gm1m2

r2
= m1ω

2r1 = m2ω
2r2 (5)

Gµ(1− µ)

12
= (1− µ)µω2 = µ(1− µ)ω2 (6)

Gµ(1− µ) = ω2µ(1− µ) = ω2µ(1− µ) (7)

G = ω2 (8)

Our choice of coordinates gave a quick result after bal-
ancing the forces.

3. Lagrange’s method

We can also look at the Lagrangian L of the system.
Converting all the forces to potential energy, you get

L = T − U = −U (9)

Recall

F = −∂U
∂x

, (10)

Therefore,

U = −
∫
Fdx (11)

L1 =
Gm1m2

r
− 1

2
m1ω

2r21 −
1

2
m2ω

2r22 (12)

L1 =
Gµ(1− µ)

1
− 1

2
ω2(1− µ)µ2 − 1

2
ω2µ(1− µ)2 (13)

Plugging in G = ω2

L1 = Gµ(1− µ)[1− 1

2
µ− 1

2
(1− µ)] (14)

L1 = Gµ(1− µ)[1− 1

2
− 1

2
µ+

1

2
µ] (15)

L1 =
1

2
Gµ(1− µ) (16)

Voila!
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C. Particle in a two-body gravitational field

Now that we know the Lagrangian of the two-body
system, we can add in the contribution of the particle to
find the Lagrangian of the three-body system.

1. Coordinates

The position of the particle is

R = (x, y), |R| = R =
√
x2 + y2 (17)

The distances from the particle to bodies one and two
are, respectively,

R1 = |R− r1| =
√

(x− µ)2 + y2 (18)

R2 = |R− r2| =
√

(x− µ+ 1)2 + y2 (19)

and remember the mass is negligible.

2. Contribution to the Lagrangian

Repeat the process. Notice this time there is one cen-
trifugal term, and two gravitational terms.

L2 =
Gm1

R1
+
Gm2

R2
− 1

2
ω2R2, (20)

L2 = G(
(1− µ)

R1
+

µ

R2
− 1

2
(x2 + y2)). (21)

So, adding all the energies together you get a Lagrangian
for the whole system

L =
1

2
Gµ(1−µ) +

G(1− µ)

R1
+
Gµ

R2
− 1

2
G(x2 + y2), (22)

L = G(
1

2
µ(1− µ) +

(1− µ)

R1
+

µ

R2
− 1

2
(x2 + y2)). (23)

D. Equations of Motion

Plugging into the Euler-Lagrange equations for x,

∂L
∂x

= 0 (24)

G
∂

∂x
(

1− µ√
(x− µ)2 + y2

+
µ√

(x− µ+ 1)2 + y2

−1

2
(x2 + y2)) = 0

(25)

∂

∂x

1− µ√
(x− µ)2 + y2

+
∂

∂x

µ√
(x− µ+ 1)2 + y2

−

∂

∂x

1

2
(x2 + y2) = 0.

(26)

Therefore, the equation of motion for x is [3]

ẍ− 2ẏ =
∂L
∂x

= 0. (27)

Repeat for y. The equation of motion for y is

ÿ + 2ẋ =
∂L
∂y

= 0. (28)

E. Jacobian integral and Jacobi constant

If we divide L by G, we can define a new equation Ω

L
G
≡ Ω (29)

The Jacobian integral and Jacobi constant C [2] for Ω
are

ẋ2 + ẏ2 = 2Ω− C (30)

C = 2Ω− ẋ2 − ẏ2 (31)

F. Solving the equations of motion at the collinear
libration points

Collinear means they all lie along the x -axis, and there-
fore have y=0. The positions are then

L2 < µ− 1 < L1 < µ < L3 (32)

Rewriting Ω to get the Hamiltonian H now,

ẋ− y = px (33)

ẏ + x = py (34)

H =
1

2
(p2x + p2y)− xpy + ypx −

1− µ
R1

− µ

R2
(35)

Hamilton’s equations give

ẋ = px + y (36)

ṗx = py −
(1− µ)(x− µ)

R3
1

− µ(x− µ+ 1)

R3
2

(37)

ẏ = py − x (38)
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ṗy = −px −
(1− µ)y

R3
1

− µy

R3
2

(39)

Now we can rewrite the Jacobi constant C

C = −2H − µ(1− µ) (40)

”The linearized equations around any
collinear equilibrium point are given by the
second-order terms of the Hamiltonian H2.
The characteristic polynomial associated to
the planar motion is p(lam) [2].”

H2 =
1

2
(p2x + p2y)− ẋpy + ẏpx − c2(x2 − 1

2
y2) (41)

c2 > 1 (42)

p(λ) = λ4 + (2− c2)λ2 + (1 + c2 − 2c22) (43)

Replacing λ

λ2 → η (44)

η =
c2 − 2±

√
9c22 − 8c2)

2
(45)

η1 > 0 (46)

η2 < 0 (47)

”This result tells us the three equilibrium
points are of the type center x center x saddle
[2].”

Now that we have determined the nature of and behavior
around the libration points, the next step is to design a
trajectory and orbit that will let you stay nearby, with
only small propulsion mass expenditures.

III. ORBITING THE COLLINEAR LIBRATION
POINTS

The math that describes the families of periodic and
quasi-periodic orbits is beyond the scope of this paper.
Instead, we will cover an overview of their qualitative
features.

A. Families of orbits

The families of periodic and quasi-periodic orbits are
equally important for mission trajectory design. Peri-
odic Lyapunov and halo orbits make up the first part of

orbit design, while quasi-periodic Lissajous orbits make
up the latter portion of the design. The mission has to
be designed with periodic (not-chaotic) orbits because
these are actually solvable. They will be modeled ana-
lytically alongside known mission parameters: the form
of the spacecraft, the scientific mission objectives, fuel
limitations, etc. Once the best orbit has been identified,
this is set as the target orbit for the mission. The next
step will hold that as the target while the model is modi-
fied to become more realistic. Introducing chaos-inducing
perturbations is the best preparation for real situations
that will present themselves in orbit [4][5]. You can only
stay in a quasi-periodic, stable orbit if you maintain it
via station-keeping with the use of thrusters from time
to time. If you let enough time pass, you would expo-
nentially drift from the unstable equilibrium, or ”saddle”
point. To prevent anomalies and reduce risk, physicists
use Monte Carlo simulations to determine a conservative
station-keeping fuel budget. [6]

Recently, articles describing orbit design for certain
classes of yet-unannounced missions are starting to
emerge. The calculations are made to be easily tailored
to a specific scenario if it is within the scope of the pa-
per. Although these scientists are not planning for any
mission directly, they are definitely setting the stage for
more libration point missions. One great example is a re-
cent article on orbital trajectories of solar-sail spacecraft
[7].

1. Periodic orbits

The periodic orbit families relevant to modern mis-
sions include the planar Lyapunov, vertical Lyapunov,
and halo families. Periodic orbits appear constant from
all points of view [8]. Halo orbits are three-dimensional
orbit whereas Lyapunov orbits are two-dimensional and
lie in the plane of the primary bodies or perpendicular
to it. Halo orbits tend to be the largest. This is an ad-
vantage because less orbital maintenance has to be done,
and therefor fuel-costs are lowered and mission lifetime
is extended [8]. See Fig.2 from [5] for an example of halo
orbits calculated in 1977 for the 1985 International Sun-
Earth Explorer (ISEE-3) mission.

2. Quasi-periodic orbits

Quasi-periodic orbits are more challenging because
they must be calculated with numerical methods instead
of the preferable analytical ones. Lissajous orbits are the
only quasi-periodic, semi-stable orbits that a spacecraft
can maintain at L1 and L2. These orbits actually re-
quire less station-keeping than periodic ones because they
are closer to the natural motion of a body at a libration
point. The plane of the orbit precesses perpendicular to
the plane of the primary bodies. This means an eclipse
is inevitable without a maneuver to avoid it see FIG.4.
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FIG. 2. Simulated periodic orbits for a spacecraft around the
collinear libration point, L1, of the Sun-Earth/Moon System.
These ”halo orbits” are stable and very well understood. In
the simulation, they are fairly simple, but they are not prac-
tical in real life. Scientists must figure out how to accurately
model the effects of complex dynamics of the solar system on
the spacecraft in orbit to refine these orbits into even more
useful models [5].

FIG. 3. Simulated quasi-periodic orbits for the Herschel
spacecraft around the collinear libration point, L2, of the Sun-
Earth/Moon System. These Lissajous orbits are unstable and
hard to model, as they are sensitive to initial conditions. They
do resemble real-life more than periodic orbits, so they are
scientifically very useful in designing the orbit of a spacecraft
[10]

This is a major drawback of these orbits, as some mis-
sions simply could not withstand a loss of power for the
duration of the eclipse. Luckily it would be feasible to
have an orbit reversal at the point just before an eclipse.
This ”time-back” method would only have to be done
every 6 years at L2 to completely avoid eclipses [9]. See
FIG. 3 for an example of stage-two orbit design for the
Herschel spacecraft.

B. Selected applications of orbit design

The history of these orbits goes back to the 1960s
when Robert Farquhar pioneered the field of spacecraft
trajectory at the beginning of the Space Race. He de-
signed most of NASA’s spacecraft orbits from the 1980s

FIG. 4. This figure shows the path of a Lissajous orbit at
L1 whose trajectory puts it in an area of zero communication
while in the Solar Radio Interference Zone [10].

through the mid-2000s [10]. Since then, there has been
widespread use of all of these types of orbits as they are
able to be tailored to the exact needs of the mission.

Although many missions are currently being planned,
the orbits they each have designed are very diverse. Cer-
tain orbits that would be ideal for one spacecraft would
be extremely inefficient and unstable for another. For
example, a spacecraft with a small surface area pointing
toward the sun would have a small perturbation from the
pressure of the solar wind. Whereas a spacecraft with a
tennis court sized Sun-shield meant to bounce back ev-
erything coming from the Sun would act as a solar-sail
and have a much larger perturbation to have to account
for. This is the case for JWST, which has a much more
frequent station-keeping schedule than if it was not wear-
ing a giant sail on its back. The station-keeping maneu-
vers increased in frequency from a baseline of 3-4 times
per year to every 21 days [11]. Things get more com-
plicated as you dive deeper, as there is both a force and
a torque on the spacecraft from the pressure from the
solar wind. Orbital station-keeping maneuvers must be
designed to off-load these extra forces in an efficient way
[11].

IV. DISCUSSION: COMPLEXITIES OF
SCIENTIFIC MISSION DESIGN FOR
LIBRATION POINT TRAJECTORIES

There is a seemingly endless list of things to consider
when designing a scientific spacecraft for the libration
points. Here are a few that I have gethered are quite
important:

• efficiency: fuel - how often the spacecraft needs to
correct orbit, observational - how much of the mis-
sion time is spent observing [8],
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• risk management: margin of error to get maximum
benefit from orbital trajectory without risking an
eclipse [9] [10],

• usefulness: how exactly do you quantify how much
a spacecraft benefits from a certain orbit at a cer-
tain libration point [2],

• reasoning: what types of scientific missions would
an orbit be best suited for and can or should we get
public support for missions of that type [12].

Luckily there is a main focus for these extraterrestrial
observatories. They are usually doing science that is not
possible on or nearby the Earth: [10].

• ISEE-3: observed the full spectrum of the Earth’s
geomagnetic tail,

• ACE, Wind, Genesis: study the solar wind before
it reaches Earth,

• WMAP, Planck: need very cold temperatures to
study cosmic microwave background,

• Herschel, JWST, NGST: also need cold tempera-
tures to study deep space and infrared, also need
extreme precision.

V. CONCLUSIONS

This was an undergraduate-level overview of the clas-
sical, Lagrangian mechanics of the collinear libration
points of the circular restricted three-body problem. We
saw how the points along the collinear axis through the
two primary bodies lead to unstable, saddle equilibrium
points.

We took that concrete knowledge and applied it to
the much more technically difficult idea of the possible
orbits spacecraft could actually maintain around these
points. This uncovered the truly unpredictable nature of
the three-body problem and the countless chaotic solu-
tions it has. We thought about some of the main mission
objectives and dynamical factors that would affect the
design of the orbit.

After all this consideration of perturbations and objec-
tives, we finished with a broad, open-ended discussion of
the challenges and applications of these orbits and the
scope of scientific missions to the libration points.
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