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Abstract

Some of DNA’s behavior can be modeled as a
biopolymer. Understanding the physical force-
extension behavior of double-stranded DNA
(dsDNA) can reveal more about the biological
function of DNA in the cell. With advance-
ments in measurement technologies, this field of
study became broadly popular in the 90s Bus-
tamante et al. [2000]. Experiments, including
Marko and Siggia [1995], measured this behav-
ior for DNA and fit it to statistical models like
the freely-jointed chain (FJC) and worm-like
chain (WLC). In the low-force regime, these
curves fit very well and show DNA can be very
accurately modeled as a biopolymer. We dupli-
cated these results by using the Helmholtz free
energy and FJC model to derive the expressions
and curves for its force-extension behavior in
one and three dimensions. Our results confirm
the curve of the FJC model overestimates the
mid-range extension regime. These errors can
be fixed by using the better and more nuanced
WLC model.

Introduction

In the early 1990s, new experimental measure-
ment techniques were developed to probe the
polymer behavior of single molecules of double-
stranded DNA. These include: optical and
magnetic tweezers, micropipettes, and atomic
force microscopy Bustamante et al. [2000]. Us-
ing these methods, DNA was found to have dif-
ferent regimes of force-extension behavior for

different magnitudes of forces applied. The four
regimes, from lowest to highest force, include:
elasticity due to entropy, intrinsic elasticity,
overstretching, and covalent bond breaking.
Once you break enough bonds, the molecule
snaps.

Each of these regimes has complex behav-
ior and does not inform the others. Some of
them have been well-understood for some time,
like the entropic elasticity regime, as we will
discuss. Others are still not completely under-
stood, and it is important to continue to pur-
sue their research. For example, in the over-
stretching regime, DNA’s helical structure be-
comes supercoiled. Supercoiling happens to be
an important factor in gene expression, so un-
derstanding more about this structural prop-
erty can help us understand more functions
DNA has in the body Irobalieva et al. [2015].
However, this concept isn’t new. It is a com-
monly held belief in molecular biology that “se-
quence determines structure determines func-
tion.” Petsko et al. [2004] Phillips et al. [2012]
This philosophy, applied to the force-extension
behavior of DNA, has lead scientists to a better
understanding of DNA’s role in biological pro-
cesses in the body. This will continue to be a
well-researched field and there is still much to
learn about the structure and physical behavior
of DNA.

In our project, we look at the entropic
elasticity regime, the regime of lowest forces.
The behavior can be modeled in three ways:
Hooke’s law, the freely-jointed chain (FJC),
and the worm-like chain (WLC). Hooke’s law
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only agrees with experimental data at low ex-
tensions. The FJC model works much better
for both low and high extensions. The WLC
model works very well over the entire regime.

In the FJC model, the polymer is a molecule
of dsDNA, made up of rigid “Kuhn” segments
which exhibit random-walk orientations and
are considered independent from each other.
The Kuhn length of DNA is about 100nm and
represents the length of a section of DNA where
the orientation of the monomers at one end is
completely decoupled from the orientation of
those one Kuhn length away. This decoupling
is why the model becomes a random walk. The
Kuhn length is a measure of the stiffness of the
polymer.

In our project, we analyse the behavior
of dsDNA statistically using the FJC model.
First, we find the Helmholtz free energy of the
polymer-optical-tweezers system. Then, we de-
rive the equilibrium and a one-dimensional re-
lation between the applied force and fractional
extension. We use this to determine the spring
constant of the system at low extensions. We
then redo the calculation in a three-dimensional
space. These results are plotted and compared
to the experimental results and FJC models
from prior research.

Model

Modeling a 1D Polymer

Beginning with a 1D model of a freely jointed
chain, the total length of the chain can be de-
fined as Na, where N is the number of seg-
ments in the chain, and a is the length of one
segment. Each segment can only point in one
of the two directions, left or right. The num-
ber of right-pointing segments is denoted as
NR and the number of left-pointing segments
is NL = N −NR. The net displacement length
L can be defined as L = a(NR−NL). An exter-
nal force is applied to this chain that stretches
it and we want to investigate the relation be-
tween the applied force and the extension of the
chain.

We can begin by writing down the Helmholtz
free energy of the chain as a function the ap-

plied force and net displacement length.
The Helmholtz free energy is given by

F = U − TS (1)

The change in F is

dF = dU − TdS − SdT (2)

where dU = TdS − PdV . The pressure in dU
is proportional to the applied force f , and the
volume is proportional to the net displacement
length L. Rewriting the last term in dU and
substituting it into Eq. (2) gives

dF = −SdT − fdL (3)

Integrating Eq. (3) gives

F = −fL− TS (4)

Now we have to find an expression for entropy.
As the polymer gets stretched close to its total
length, the number of configurations of its seg-
ments decreases and so does the entropy. Thus,
the multiplicity is a function of N and NR. We
can apply Stirling’s Approximation to the mul-
tiplicity and write the entropy as

S = k [N lnN −NR lnNR − (N −NR) ln (N −NR)]
(5)

Substituting Eq. (5) into Eq. (4) gives the full
Helmholtz free energy equation.

F = −fL−kT [N lnN −NR lnNR − (N −NR) ln (N −NR)]
(6)

Now we want to find a relation between the
applied force f and the fractional extension of
the polymer L

Na . We can differentiate Eq. (6)
with respect to net displacement length L.

∂F

∂L
= −f +

kT

2a
ln

(
NR

N −NR

)
(7)

The equilibrium state is achieved when the free
energy is at minimum. Setting Eq. (7) to 0 and
rearranging it gives

f =
kT

2a
ln

(
NR

N −NR

)
(8)

The ratio of right-pointing segments to left-
pointing segments is then

NR
N −NR

= e
2fa
kT (9)
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We can rewrite NR

N−NR
as

1+ L
Na

1− L
Na

to introduce

the fractional extension into the equation.

1 + L
Na

1− L
Na

= e
2fa
kT (10)

Rearrange the previous equation reveals the hy-
perbolic relation between the fractional exten-
sion of the polymer and the applied force.

∴
L

Na
= tanh

(
fa

kT

)
(11)

Figure 1: Applied force vs. fractional extension
of the polymer in 1D

Fig. (1) is the graph of Eq. (11). At small
forces, the polymer behaves like a spring and
stretches linearly. We can find an expression in
the form of Hooke’s Law to describe this trend.

The natural log in the right-hand side of Eq.
(8) can be Taylor expanded to 2L

Na under the
assumption that L << Na. This gives us

∴ f =
kT

Na2
L (12)

where the spring constant is kT
Na2 . However, at

large forces, the polymer no longer behaves in
a linear fashion, and Eq. (12) breaks down.

Freely Jointed Chain Model for a
3D Polymer

Assumptions for FJC

We are assuming the polymer can be repre-
sented by a finite number N of monomers

which all have discreet length l (also known as
the Kuhn length). We will assume monomers
do not have any affect on each other, thus their
direction is purely random. This allows us to
imagine the shape of the polymer as a result of
a random walk.

Figure 2: Visualization of monomers pointing
in random direction, this is visualized as vec-
tors. Image by Thorinmuglindir [2009]

Derivation for FJC (in 3-D, continuous
distribution of all possible directions)
Under Constant Force

To begin, let’s consider the system to be a
single monomer which can rotate freely. The
monomer is one of many that makes up a poly-
mer; thus it is tugged by some force f on both
sides. By assuming constant force, the energy
of this system can be expressed as:

U = −W = −
∫
C

~f · d~r = −fa cos θ

Therefore, we can express the partition func-
tion as for this monomer as:

Z1 =
∑
S

e−E(S)/kT =
∑
S

efa cos θ/kT

Recall Moh’s rules of evaluating sums: we can
approximate this series as an integral.

Z1 ≈
∫
states

efa cos θ/kT

Before we can continue any further in the
derivation, we must now figure out what are
integrating with respect to. Over all possible
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state, the only variable changing is the direc-
tion of the monomer. I want you to imagine
this monomer as a vector from the origin of
a 3D graph to the surface of a unit sphere.
Each point on the surface is a direction that
the monomer could point- they are all possible
states. So to summate over all possible points
on a sphere, let us invoke something similar to
spherical coordinates.

Z1 =

∫ 2π

0

∫ π

0

efa cos θ/kT sin θ dθ dφ

∴ Z1 = 4π
kT

fa
sinh

(
fa

kT

)
Note, we chose the unit sphere as we only want
to sum over the possible directions.

Now that we have Z1, let’s find Z. Recall
when comparing distinguishable particles, the
partition function is given by: Z = ZN1 . Also
recall free energy is given by G = −kT lnZ.
Plugging all of this into G, we get:

G = −NkT ln

[
4π
kT

fa
sinh

(
fa

kT

)]
Recall free energy, length and force are related:

L = −∂G
∂f

∴ L = Na

[
coth

(
fa

kT

)
− kT

fa

]
(13)

Now let’s check. Will this expression still obey
Hook’s Law when Taylor expanding at f → 0?

L ≈ aN

3kT
f +O(f3)

∴ f ≈ 3kT

Na2
L (14)

Something interesting to note: the expansion
of the 3D relationship (Eq. 14) is exactly 3
times the expansion of the 1D relationship (Eq.
12). Perhaps the 3 comes from the number of
dimensions we are modeling.

Model Results

To compare our results to results found by Bus-
tamante et al. [1994], we assumed the following
parameters.

T = 300K

a = 32.7nm

Ltotal = 32.8µm

T was chosen to be 300K we expect such an ex-
periment would be conducted at around room
temperature. As for a and Ltotal looking at
the original paper by Bustamante et al. [1994],
we find the original Kuhn length and contour
length parameters they used.

Figure 3: Graph of the force-extension relation-
ship of a 1D Two State Polymer (yellow curve)
given by Eq. (12), and a 3D Polymer modeled
as a FJC (blue curve) given by Eq. (13).

Discussion

Analysis of our model’s performance requires
comparison with the experimental elasticity
data of dsDNA molecules, which researchers are
able to directly measure since the early 1990s
through magnetic and hydrodynamic forces
Smith et al. [1992]. Though graphs of the
respective experimental data are included in
our referred previous papers, there is unfortu-
nately no raw data available to us. We thus
opted to overlay corresponding curves produced
by our one-dimensional and three-dimensional
FJC model (Fig. 3) onto the graph from
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Phillips et al. [2012], in order to provide a visual
comparison. (Fig. 4)

Figure 4: Force-extension curve for double-
stranded DNA. Experimental data for force-
extension for double-stranded DNA (boxes). Il-
lustrating the distinction between the freely-
jointed chain model (orange, blue, dashed), and
the worm-like chain model (solid red). Our FJC
3D curve from Fig. 3 (blue) fits well over the
original article’s FJC curve (dashed red). Bus-
tamante et al. [1994] Phillips et al. [2012]

Our derivation of the three-dimensional FJC
model (blue line) perfectly aligns with the orig-
inal FJC fit (red dashed line underneath) to
the small-x data, with a L value of 32.7 µm
and a Kuhn length a of 100 nm calculated by
Bustamante et al. [1991]. Both predict exper-
imental results accurately below an extension
of 10 nm, where the DNA molecule behaves
rather similar to a mechanical spring according
to Hooke’s Law. After overestimating the ex-
tension as extension force increases, our model
rejoins experimental data at forces higher than
104 fN but not exceeding the 31 µm limit. This
agreement indicates a full extension of the DNA
molecule contour length, Na, and stretching
beyond the contour length will likely cause the
conventional chain elasticity, upon which our
model builds, to breakdown with deformation
and enthalpic effects. However, our FJC model
is powerful enough to yield rather accurate pre-

dictions of the contour length and the Kuhn
segment length of a dsDNA molecule entirely
based on the force-extension data within a force
range below 105 fN.

In the middle range, the force needed to ex-
tend the molecule rises higher than the pre-
diction of our FJC model, largely due to its
assumption of discrete, inextensible segments
that make up the dsDNA molecule. Real DNA
molecule segments are neither perfectly straight
and rigid, nor strictly independent, which re-
duces the possibility for extension: depend-
ing on the genome-pair sequences, segments
of DNA may be intrinsically bent and thus
heighten the contractibility of the entire DNA
molecule Smith et al. [1992]. A correlation be-
tween the directions of neighboring segments
also reduces extension by self-avoiding and thus
ruling out unlikely alignments. The improved
worm-like chain model (red solid line in Fig. 4)
simultaneously solves these two imperfections
by modeling the dsDNA molecule as a long
worm, which gives excellent agreement over the
force range in Fig. 4.

This worm-like chain model allows for the
flexibility and nuance for the stretching of the
DNA molecule which more accurately fits ex-
perimental data. Instead of assigning probabil-
ities to definite variables, the WLC model as-
sesses the probabilities of functions to allow for
a more continuous analysis of the distribution.
Although the WLC model matches extremely
well with the experimental data, extrapolating
the model to both the high force and low force
limits run into even more nuanced issues. In the
low force regime, hydrophobic interactions are
present as the polymers move past each other.
The residues of these polymer chains can at-
tract one another, which would make the chain
more resistant against a pulling force. The
worm-like chain model does not account for this
self-interaction, so the experimental data will
deviate from the model at low forces [Fu et al.].

On the other end of the spectrum, the high-
force regime, the WLC model does not account
for enthalpic effects under large pulling forces.
When double stranded DNA is stretched under
large pulling forces, an extra enthalpic factor
K has to be added to the model to account for
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the longitudinal resistance of the chain.
Placed under large stretching forces, the

physical attributes of the polymer are changed.
It is entirely viable to consider the elasticity of
the DNA molecule after it is stretched past its
natural length, however, the worm-like chain
model does not extend further than the nat-
ural length of the polymer chain. This over-
stretched regime is experimentally significant
in discovering more about the denaturation of
DNA. When DNA is placed under a stretching
force between 60-70 pN, the DNA length in-
creases rapidly and without much extra force.
Then after another transition point, the DNA
has a larger resistance to stretching and the
experimental data’s slope increases once more.
Punkkinen et al. [2005]

Conclusion

We were able to duplicate the statistical model
by Bustamante et al. [1994] of the force-
extension behavior of a single molecule of ds-
DNA in the entropic elasticity regime using the
FJC model. In the 1D model of a polymer, we
found that the force-extension relation can be
expressed as a hyperbolic tangent function. We
found in the limit as L approached 0 or infinity
we got valid answer; however, the shape of the
curve was wrong. The force-extension via the
3D FJC model improves on the shape of the
curve. This equation agrees with experimental
data for low and high force regimes, but fails
in the middle to find better equations which
model force extensions, one must look to the
worm-like chain model. This is due mainly due
to the FJC model’s inability to account for the
mechanical forces that arise from monomers in-
teracting with other monomers.
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